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Booster historically had a γT –jump system:

- Booster orbit was not controlled (much improved).

- Timing of the jump was not precise enough (improved).

- Real-estate for the quadrupoles was needed (account for).

A new Q-jump or a resonant γT –jump system can be considered:

- Q-jump can change γT by 0.1-0.3 units with existing Booster QS correctors.

- Changes γT linearly, side effect is a change in Qx tune.

- System is being developed now as part of Booster improvement.

- Resonant γT jump can change γT by 0.4-0.7 units with new quads.

- Changes γT quadratically, side effect is a change in max disperson.

- Quad requirements similar to MI quad γT jump requirements.

Implementation details for both types of jump:

- Stabilize beam orbit near transition.

- Synchronize γT-jump with transition-crossing (freq.-based timing).

- Adjust RF transition parameters to account for γT-jump.
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Illustration of γT Jumps near Transition

No Jump                            Well-timed Jump

Badly-timed Jump              Jump Tuning Range Study



Chandra Bhat simulations in ESME,

Jean-Francois Ostiguy simulations in PyORBIT

This on-going simulation work requires:

- voltage and phase-curves.

- linear and nonlinear phase-slip factors.

- accurate longitudinal particle distribution.

- RF feedback and damper systems.

- space-charge and impedance effects at transition.

- validating against existing Booster transition-crossing observations.

- quantifying impact of 20 Hz ramp, higher intensity.

Likely benefits of Q-jump or a resonant γT –jump system for transition:

1) Reduce direct loss from RF bucket.

2) Reduce collective instabilities which occur at transition.

3) Reduce longitudinal emittance growth (exacerbates slip-stacking later).

Plan to implement Q-jump and go from there.
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Q-Jump Transverse Effects – Tunes, γT, Dx

Studies show we can only operate with 

QS between about -15 and +10, 

resulting in a 0.1-0.2 γT, unit jump.

Still working on longitudinal aspects for 

operationalizing Q-jump system.

Larger jump requires resonant γT jump.
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Resonant γT Jump Transverse Effects – Tunes, γT, Dx

Aperture-scans near transition-crossing 

will be carried out to verify that the 

lattice can accommodate this dispersion 

(and to optimize the location).
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Locations for γT jump System

Uses 12 of 24 

Booster short-

straight sections:

24cm in every Booster 

short-straight section.

Field strength and aperture requirements for

Booster γT quads similar to MI γT quads.

Although Booster location requires shorter quads.
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PSR & Booster
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1970: Fermilab Booster

PIP-II Booster 17 kW inj, 160 kW extr.

24-sides, originally 5.7m dipole-to-dipole

to be modified to 6.7m dipole-to-dipole

1985: Los Alamos PSR

currently 100 kW

10-sides, ~6m dipole-to-dipole

(first dipole bend is modified to large aperture)
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SNS & J-PARC

11 1/29/2023Jeffrey Eldred | ACE Workshop – Transverse Dynamics of PAR

2007: J-PARC RCS

currently 110 kW inj, 800 kW extr.

3-sides, 46m dipole-to-dipole

8m uninterrupted injection straight

2006: Oak Ridge SNS

currently 1.4 MW

4-sides, 30m dipole-to-dipole

11m uninterrupted injection straight
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Proposed Fermilab PAR
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Fermilab PAR

at least 100 kW

racetrack, 28m dipole-to-dipole

10m uninterrupted injection straight

PAR is consistent with modern design strategy for powerful linacs. 

*injection dump

will be straight-

ahead not the 

interior of the ring.

*
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Improvements vs. PIP-II Booster Injection Section
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PIP-II Booster has 7.5 m for 800 MeV H- beam which is a tight fit.

unstripped H- go to inline absorber (although BTL collimators try to mitigate).

SNS & J-PARC instead extract the H- particles to an external absorber.

PAR would have at least 10m uninterrupted straight, another ~9m before dipole

PIP-II Booster Injection Chicane (D. Johnson Dec 2020)

J-PARC RCS Injection Chicane
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Improvements vs. PIP-II Booster Injection Section
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PIP-II Booster beam into L11 must circulate around ring before collimation.

SNS has collimation 1/4 around ring (after first bend section).

J-PARC has collimation immediately following injection.

PAR would also have collimation immediately following injection.

J-PARC RCS

Injection & Collimation

PIP-II Booster Injection & Collimation
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Modern Lattice Features
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10m uninterrupted injection straight

- ability to safely extract unstripped H- particles.

- injection chicane suitable for higher energy beams (at least 1 GeV.)

28m dipole-to-dipole injection straight with ~𝛑/2 phase-advance

- real estate for collimation downstream of injection.

No combined function magnets or extreme edge-focusing dipoles.

- reduces field-errors, improves tuning, prevents electron cloud instability.

Dispersion-free straights

- no beam loss due to syncho-beta coupling resonances.

- ability to separate longitudinal and transverse degrees of freedom.

Two extraction straights, with ππ/2 between kicker and septum.

Real estate for RF, correctors and diagnostics.

Sextupole π-pairs for mitigation of third-order resonances.
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PAR Locations
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Extraction

sections

Cross-over
RF sections

Collimation

Injection

Chicane

Phase Trombone

CY Tan
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Long Injection Straight
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10m uninterrupted straight section 

for injection chicane allows 

extraction of unstripped H-

Following 5.8m allows collimation.

Also sufficient real estate for 

painting & corrector magnets.

John Johnstone
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Dispersion Suppressors + Arc Cell
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John Johnstone
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Short Straight for Extraction

19 1/29/2023Jeffrey Eldred, John Johnstone | ACE Workshop – Transverse Dynamics of PAR

π/2 phase advance from kicker to septa 

provides most efficient kick for extraction.

Space for fourth kicker if needed.

Option for two independent extractions.

John Johnstone
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Short Straight for RF
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RF 1 RF 2RF? RF?

Real estate for:

4 Booster-style RF cavities

4 devices no more than 1.7m

John Johnstone
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Long Cross-over Straight (with 12’’ shift)
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Up – Out – Back – Over Down – In – Back – Over

No shared beampipe required in cross-over region. John Johnstone
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Shift Impact on Short-straight
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12” longitudinal shift in the long-straight,

12’’ separation in short-straights.

This helps create clearance for RF

and in extraction regions.

Chandra’s talk will give more detail 

on main RF and DS-mode RF
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Phase-Trombone Cell
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Seven quadrupoles allow tune to be changed +/- 75 degrees without 

impacting the beta functions at other location in the ring.

Fermilab Recycler currently operates with a phase-trombone.

John Johnstone
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Transverse Dynamics
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Beam Distribution (after painted injection)
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“Initial” beam distribution is well within +/- 40mm apertures (3.25’’ diameter)

- Nonlinear tracking simulations with full machine apertures is ongoing work.

- Dark Sector mode will be at least 50% larger. 

Ben Simons
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PAR Tune Diagram

26 1/29/2023Jeffrey Eldred, Ben Simons | ACE Workshop – Transverse Dynamics of PAR

Space-charge footprint (sketch based on PIP-II Booster simulations).

- PAR avoids most dangerous quadrupole and dipole resonances.

Sextupole resonances is main focus of nonlinear correction.

Octupole, linear coupling, and skew-sextupole resonances will also be examined.
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Sextupole Resonances
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Currently the π-phase-advance and overall lattice symmetry suppresses the RDTs:

𝝋𝒚 → 1.0256

𝝋𝒙 → 0.9036
2 Sextupoles for

Horizontal Chromaticity

4 Sextupoles for

Vertical Chromaticity

6 sextupoles x 8 arcs

= 48 sextupoles,

Organized in 2 families.

3Qx: 27% vs typical

Qx+2Qy: 23% vs typical

Qx-2Qy: 6% vs typical

𝝋𝒚 → 1.0256

Ben Simons
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Preliminary Tracking with Sextupoles is Stable
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Ben Simons
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Dark-Sector Mode Operation
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Booster-mode operation is 6.5e12 intensity, 20-Hz rep. rate. 

and 16 pi mm mrad 95% normalized emit.

PIP2BD-mode operation can be 50-60 Hz, and 24-32 pi mm mrad.

- With the same space-charge (and also within foil scattering limits) PAR should 

be able to support 10-15e12 intensities.

- A further factor of x1.5 is possible with 1 GeV upgrade.

PIP2BD-mode operation will request shorter pulses (200-500ns full-width) using 

bunch-rotation, which may require using only 50-70% of that intensity

(i.e 5-10e12 at 0.8 GeV or 7.5-15e12 at 1.0 GeV).

- Simulation and analysis of bunch rotation case is ongoing.
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Outlook
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Preliminary considerations of transverse optics looks strong:

- Fits at BTL location with F-sector crossings.

- PAR greatly improves on PIP-II Booster injection optics.

- Siting and optics for RF, cross-over, collimation, extraction well-developed. 

- PAR will encounter the same resonances as PIP-II era Booster.

-- strategy for addressing sextupole resonances.

- PAR beam size generously fits within the larger aperture, with smaller max betas.

Tracking studies to investigate risks:

- Using additional sextupole correction circuits to avoid resonances.

- Finding the tolerances for dipole and quadrupole errors

Simulations to investigate upside potential:

- Booster will be limited by injection duration, PAR only limited by performance.

- How short and intense of a beam can be deliver to PIP2-BD program?

- Novel beam dynamics? self-consistent angular-momentum dominated beams

- see 2022 SNS SpaceCharge workshop.
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